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Abstract

Logarithmic transformations are a standard solution to displaying data that span
several magnitudes within a single graph. This paper investigates the impact of log
scales on perceptual sensitivity through a visual inference experiment using statistical
lineups. Our study evaluated participant’s ability to detect differences between ex-
ponentially increasing data, characterized by varying levels of curvature, using both
linear and logarithmic scales. Participants were presented with a series of plots and
asked to identify the panel that appeared most different from the others. Due to the
choice of scale altering the contextual appearance of the data, the results revealed
slight perceptual advantages for both scales depending on the curvatures of the com-
pared data. This study serves as the initial part of a three-paper series dedicated to
understanding the perceptual and cognitive implications of using logarithmic scales
for visualizing exponentially increasing data. These studies serve as an example of
multi-modal graphical testing, examining different levels of engagement and interac-
tion with graphics to establish nuanced and specific guidelines for graphical design.
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1 Introduction

Effective communication of data is critical in influencing people’s opinions and actions.

This consideration was particularly true during the COVID-19 pandemic, where data vi-

sualizations and dashboards were vital in informing the public and policymakers about the

outbreak’s status. Local governments relied on graphics to inform their decisions about

shutdowns and mask mandates, while residents were presented with data visualizations to

encourage compliance with these regulations. A major issue designers encountered when

creating COVID-19 plots was how to display data from a wide range of values (Fagen-

Ulmschneider, 2020, Burn-Murdoch et al. (2020)). When faced with data that span several

orders of magnitude, we must decide whether to show the data on its original scale (com-

pressing the smaller magnitudes into a relatively small area) or to transform the scale and

alter the contextual appearance of the data. Log axis transformations have emerged as a

standard solution to this challenge, as they allow for the display of data over several orders

of magnitude within a single graph.

Exponential data is one such example of a function that compresses smaller magnitudes

into a smaller area; Fig. 1 presents hard drive capacity over the past forty years on both

the linear and log scales to demonstrate the usefulness of log scales when dealing with

data spanning multiple magnitudes. Logarithms facilitate the conversion of multiplicative

relationships (displaying 1 & 10 with a distance of 10 units apart and displaying 10 & 100

with a distance of 90 units apart) to additive relationships (displaying 1 & 10 and 10 &

100 an equal distance apart), highlighting proportional relationships and linearizing power

functions (Menge et al., 2018). Logarithms also have practical applications, simplifying

the computation of small numbers such as likelihoods and transforming data to conform

to statistical assumptions. Although log scales have a long history of use in fields such
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Figure 1: These plots present hard drive capacity over the past forty years on both the

linear and log scale and illustrate the use of the log scale when displaying data which spans

several magnitudes.

as ecology, psychophysics, engineering, and physics (Heckler et al., 2013; Waddell, 2005),

there is still a need to understand the implications of their use and provide best practices

for their implementation.

Apart from the biases resulting from using log scales, there is a general misinterpretation

of exponential growth. Early stages of exponential growth often appear to have a small

growth rate, while the middle stage seems to exhibit more quadratic growth. It is only in

the later stages that the exponential growth becomes apparent. Fig. 2 highlights the three

stages and associated appearances of exponential growth at each stage (Von Bergmann,

2021). This misinterpretation can lead to decisions made under inaccurate understanding,
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Figure 2: This figure highlights the three stages and associated appearances of exponential

growth at each stage. Early stages of exponential growth often appear to have a small

growth rate, while the middle stage seems to exhibit more quadratic growth. It is only in

the later stages that the exponential growth becomes apparent.

resulting in potential consequences.

Previous studies have explored the estimation and prediction of exponential growth and

found that individuals often underestimate exponential growth when presented values nu-

merically and graphically (Wagenaar and Sagaria, 1975). The hierarchy of plot objects, such

as lengths and angles, as described by Cleveland and McGill (1985), offers a possible expla-

nation for the underestimation observed in exponentially increasing trends. Experiments

conducted by Wagenaar and Sagaria (1975), Jones (1977), and MacKinnon and Wearing

(1991) aimed to improve estimation accuracy for exponential growth. While contextual

knowledge or experience did not enhance estimation, instruction on exponential growth
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reduced underestimation by prompting participants to adjust their initial starting value

(Wagenaar and Sagaria, 1975; Jones, 1977). Furthermore, providing immediate feedback

to participants about the accuracy of their predictions improved estimation (MacKinnon

and Wearing, 1991).

Log transforming the data may address our inability to predict exponential growth

accurately. However, this transformation introduces new complexities, as most readers

may need to be mathematically sophisticated enough to intuitively understand logarithmic

math and translate it back into real-world effects. Despite the transformative power of

logarithmic scales in facilitating accurate data representation, Menge et al. (2018)’s survey

of ecologists highlights the challenges associated with the widespread comprehension of

log-scaled data. Notably, the study identifies prevalent misconceptions arising from linear

extrapolation assumptions in log-log space, a factor that often leads to neglect of the

underlying exponential relationships in linear-linear space.

Building upon the need for a nuanced understanding of data representation, Buja et al.

(2009) introduced statistical lineups as a framework for statistical inference and graphical

tests. Statistical lineups treat a data plot as a visual statistic, summarizing the data as a

numerical function or mapping. Evaluation of a panel in a statistical lineup requires visual

inspection by a person, and if visual evaluations lead to different results, two visualization

methods are deemed significantly different. Recent studies have utilized statistical lineups

to quantify the perception of graphical design choices (Hofmann et al., 2012; Loy et al.,

2017, 2016; VanderPlas and Hofmann, 2017). Statistical lineups provide an elegant way

of combining perception and statistical hypothesis testing through graphical experiments

(Majumder et al., 2013; Vanderplas et al., 2020; Wickham et al., 2010).

The term ‘lineup’ is an analogy to police lineups in criminal investigations, where wit-
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nesses identify the criminal from a group of individuals. Similarly, researchers present a

statistical lineup plot consisting of smaller panels and ask the viewer to identify the panel

that contains the actual data from a set of decoy null plots. Researchers generate null

plots containing data generated according to a prespecified hypothesis using permutation

or simulation. Typically, a statistical lineup consists of 20 panels, with one target panel

and 19 null panels. If the viewer can identify the target panel from the null panels, it

suggests that the actual data is visually distinct from the data generated under the null

model.

While explicit graphical tests direct the participant to a specific feature of a plot to

answer a particular question, implicit graphical tests require the user to identify both the

purpose and function of the plot in order to evaluate the plots shown. Furthermore, implicit

graphical tests, such as lineups, simultaneously test for multiple visual features, including

outliers, clusters, and linear and nonlinear relationships (VanderPlas and Hofmann, 2015).

Researchers can collect responses from multiple viewers using crowd-sourcing websites such

as Prolific and Amazon Mechanical Turk.

In this paper, our primary focus is to evaluate the benefits and drawbacks of using log

scales, specifically delving into their impact on perceptual sensitivity towards the degree

of curvature. To address this, we conducted a visual inference experiment employing sta-

tistical lineups (Buja et al., 2009). Although our findings could have broad applications

to various functions resulting in curvature, our experiment deliberately centered on par-

ticipants’ ability to identify differences in the curvature of exponentially increasing curves

when presented with both linear and log scales. We discuss the nuances and challenges

of testing the perception of exponential growth in the appendix. Importantly, this in-

vestigation did not necessitate participants to undergo mathematical training or possess
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a prior understanding of exponential growth or logarithmic scales. Instead, it aimed to

unravel the inherent ability to identify differences in curvature within charts, focusing on

the fundamental nature of visual perception.

In Section 2 we describe the participant sample, the graphical task, data generation

process, and study design. Section 3 describes the participant data collected and shares

results from the statistical analyses of the data using a generalized linear mixed model.

We present overall conclusions and discussion of the results in Section 4, and provide an

overview of future related papers. The Supplementary Material includes a link to the

RShiny data collection applet, participant data used for analysis, and code to replicate

the analysis. The results of this study lay the groundwork for further exploration of the

implications of using log scales in data visualization.

2 Study Development and Methods

2.1 Data Generation

In this study, we simulated data from an exponential model to generate the target and null

data sets; the models between panels differ in the parameter values selected for the null and

target panels. In order to guarantee the simulated data spans the same domain and range

of values for each statistical lineup panel, we began with a domain constraint of x ∈ [0, 20]

and a range constraint of y ∈ [10, 100] with N = 50 points randomly assigned throughout

the domain. We mapped the randomly generated x values to a corresponding y value based

on an exponential model with predetermined parameter values and multiplicative random

errors to simulate the response. These constraints assure that participants who select

the target panel are doing so because of their visual perception differentiating between
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curvature or growth rate rather than different starting or ending values.

We simulated data based on a three-parameter exponential model with multiplicative

errors:

yi = α · eβ·xi+ϵi + θ (1)

with ϵi ∼ N(0, σ2).

The parameters α and θ were adjusted based on β and σ2 to guarantee the range and

domain constraints are met. The model generated N = 50 points (xi, yi), i = 1, ..., N

where x and y have an increasing exponential relationship. The heuristic data generation

procedure is described in Algorithm 1 and Algorithm 2.

Algorithm 1 Lineup Parameter Estimation

� Input Parameters: domain x ∈ [0, 20], range y ∈ [10, 100], midpoint xmid.

� Output Parameters: estimated model parameters α̂, β̂, θ̂.

1: In order to obtain the two middle points (total of four points for estimating three

parameters), determine the y = −x line scaled to fit the assigned domain and range.

2: Map the values xmid − 0.1 and xmid + 0.1 to the y = −x line for the two additional

points.

3: From the set of points (xk, yk) for k = 1, 2, 3, 4, calculate the coefficients from the linear

regression model ln(yk) = b0 + b1xk to obtain starting values for α0 = eb0 , β0 = b1, θ0 =

0.5 ·min(y)

4: Using the nls function from the base stats package in Rstudio [@Rstudio] and the

starting parameter values - α0, β0, θ0 - fit the nonlinear model, yk = α · eβ·xk + θ to get

estimated parameter values for α̂, β̂, θ̂.

8



Algorithm 2 Lineup Exponential Data Simulation

� Input Parameters: sample size N = 50, estimated parameters α̂, β̂, and θ̂, from

Algorithm 1, and standard deviation σ from the exponential curve.

� Output Parameters: N points, in the form of vectors x and y.

1: Generate x̃j, j = 1, ..., 3
4
N as a sequence of evenly spaced points in [0, 20]. This ensures

the full domain of x is used, fulfilling the constraints of spanning the same domain and

range for each parameter combination.

2: Obtain x̃i, i = 1, ..., N by sampling N = 50 values from the set of x̃j values. This

guarantees some variability and potential clustering in the exponential growth curve

disrupting the perception due to continuity of points.

3: Obtain the final xi values by jittering x̃i.

4: Calculate α̃ = α̂

eσ
2/2

. This ensures that the range of simulated values for different stan-

dard deviation parameters has an equal expected value for a given rate of change due

to the non-constant variance across the domain.

5: Generate yi = α̃ · eβ̂xi+ei + θ̂ where ei ∼ N(0, σ2).
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Figure 3: Density plot of the lack of fit statistic showing separation of difficulty levels:

obvious curvature, noticable curvature, and almost linear.

2.2 Parameter Selection

We chose three levels of trend curvature (low curvature, medium curvature, and high cur-

vature). For each curvature level, we simulated 1,000 data sets of (xij, yij) points for

i = 1, ..., 50 increments of x-values and replicated j = 1, ..., 10 corresponding y-values per

x-value. Each generated xi point from Algorithm 2 was replicated ten times. We fit a

linear regression model on each of the individual data sets and computed the lack of fit

statistic (LOF) which measures the deviation of the data from the linear regression model.

After obtaining the LOF statistic for each level of curvature, we evaluated the density plots

(Fig. 3) to provide a metric for differentiating between the curvature levels and thus detect-

ing the target plot. While the LOF statistic provides a numerical value for discriminating

between the difficulty levels, it cannot be directly related to the perceptual discriminability;

it serves primarily as an approximation to ensure that we are testing parameters at several

distinct curvature levels. Table 1 lists the final parameters used for data simulation.

10



Table 1: Lineup data simulation final parameters

Curvature Level xmid α̂ α̃ β̂ θ̂ σ̂

High 14.5 0.91 0.88 0.23 9.10 0.25

Medium 13.0 6.86 6.82 0.13 3.14 0.12

Low 11.5 37.26 37.22 0.06 -27.26 0.05

2.3 Lineup Setup

To generate the small multiple scatter plots for the statistical lineups shown to participants

in the study, we simulated a single data set corresponding to curvature level A for the

target plot and multiple data sets corresponding to curvature level B for the null plots.

The nullabor package in R (Buja et al., 2009) randomly assigned the target plot to one of

the panels surrounded by panels containing null plots. The target and null panels span a

similar domain and range due to the implemented constraints when simulating the data; the

rationale for this decision is based on preattentive feature perception (Wolfe and Utochkin,

2019) and is discussed in detail in the appendix. There were a total of six lineup curvature

combinations; Fig. 4 illustrates the six lineup curvature combinations (top: linear scale;

bottom: log scale) where the solid line indicates the curvature level designated to the target

plot while the dashed line indicates the curvature level assigned to the null plots. Two sets

of each lineup curvature combination were simulated (a total of twelve test data sets) and

plotted on both the linear scale and the log scale (24 test lineup plots). In addition, three

curvature combinations generated homogeneous “Rorschach” lineups, where all panels were

from the same distribution. Each participant evaluated one “Rorschach” lineup. Results

from the “Rorschach” evaluations indicate null panel selections were distributed relatively

evenly with multiple candidates for the most interesting panel. We display and further
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Figure 4: Thumbnail plots illustrating the six curvature combinations displayed on both

scales (linear and log). The solid line indicates the curvature level to be identified as the

target plot from amongst a set of null plots with the curvature level indicated by the dashed

line.

discuss the “Rorschach” evaluation results in the appendix.

Fig. 5 presents examples of statistical lineups with the target data simulated with expo-

nential parameters corresponding high curvature and the surrounding null panels simulated

with parameters for low curvature. The statistical lineup on the left presents increasing

exponential data with displayed on a linear scale with panel 13 as the target panel. The

lineup on the right shows increasing exponential data plotted on a log scale with panel 4

as the target panel.
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Figure 5: The lineup plot on the left displays increasing exponential data on a linear scale

with panel (13 as the target. The lineup plot on the right displays increasing exponential

data on the log scale with panel 4 as the target.

2.4 Study Design and Implementation

We used Prolific, a survey site that connects researchers to study participants, to recruit

participants above the age of majority (18+ in most regions; 19+ in certain U.S. states)

in their region; we did not request a representative sample, previous literature suggests

there are minor effects of demographics on the outcome of graphical experiments involving

lineups (VanderPlas and Hofmann, 2015; Majumder et al., 2013). Following the completion

of the current statistical lineup study, participants sequentially completed two additional

graphical experiments related to the perception of logarithmic scales (to be discussed at

a later date), and we compensated them for their participation in the series of all three

studies.

We showed each participant 13 lineup plots (12 test and one Rorschach). At the start

of the study, we randomly assigned participants to one of the two replicate data sets for
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each of the six unique lineup curvature combinations. Participants evaluated the lineup

plot corresponding to the linear and log scales for each assigned test data set. For the

additional Rorschach lineup plot, we randomly assigned participants to one data set shown

on either the linear or the log scale. We randomized the order in which participants saw

the assigned 13 lineup plots.

Fig. 6 presents a screenshot of the study homepage, which served as an introduction

to participants and guided them through the series of three graphical experiments. The

first experiment, discussed in this paper, utilized statistical lineups to investigate the effect

of logarithmic scales on perceptual sensitivity. The second experiment, incorporated an

interactive ‘You Draw It’ feature introduced by Aisch et al. (2015) and employed in the

study by Robinson et al. (2022), to examine the effect of logarithmic scales on prediction.

The third experiment focused on numerical estimation and cognitive understanding of

logarithmic scales.

Participants completed the series of graphical tests using an R Shiny application (Chang

et al., 2022) accessible at https://emily-robinson.shinyapps.io/perception-of-statistical-

graphics-log/. The code used to create the study application is available on GitHub at

https://github.com/earobinson95/perception-of-statistical-graphics-log. Be-

fore completing the lineup study, the ‘You Draw It’ study, and the estimation study, par-

ticipants were prompted to provide their demographic information. The series of studies

received an IRB exemption (IRB #20200720178EX) from the University of Nebraska -

Lincoln.

The statistical linenup study guided participants through the series of 13 lineup plots

and asked them to identify the plot which appeared to be most different from the others

(Fig. 7). In each lineup evaluation, participants justified their choice in a select all that

14
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Figure 6: Screenshot of the study applet homepage guiding participants through the series

of three graphical experiments related to the perception of logarithmic scales.
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Figure 7: Screenshot of an example trial participants see when completing the lineup study.

The applet guided participants through 13 lineup plots and asked them to identify the plot

which appeared to be the most different from the others.

apply format (Clustering, Different range, Different shape, Outlier(s), and Other) as shown

on the left side of the applet screenshot. Additionally, participants provided their level of

confidence in their choice by answering “How certain are you?” on a five-point likert scale

from very certain to very uncertain. This graphical task aimed to test an individual’s

ability to perceptually differentiate exponentially increasing trends with differing levels of

curvature on both the linear and log scales.

2.5 Statistical Analysis

Each lineup plot evaluated was assigned a binary value based on the participant response

(correct target plot identification = 1, not correct target plot identification = 0). We
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defined Yijkl as the event that participant l = 1, ..., Nparticipant correctly identified the target

plot for data set k = 1, 2 with curvature combination j = 1, 2, 3, 4, 5, 6 plotted on scale

i = 1, 2. The binary response was analyzed using a generalized linear mixed model (GLMM)

following a binomial distribution with a logit link function with a row-column blocking

design accounting for the variation due to participant and data set, respectively, as

logit P (Yijkl) = η + δi + γj + (δγ)ij + sl + dk (2)

where

� η is the baseline average probability of selecting the target plot

� δi is the effect of scale i = 1, 2

� γj is the effect of curvature combination j = 1, 2, 3, 4, 5, 6

� (δγ)ij is the two-way interaction between the ith scale and jth curvature combination

� sl ∼ N(0, σ2
participant) is the random effect for participant characteristics

� dk ∼ N(0, σ2
data) is the random effect for data specific characteristics.

We assumed the random effects for data set and participant are independent. Target

plot identification was analyzed using a GLMM implemented in glmer from the lme4 R

(version 4.2.2) package (Bates et al., 2015). We used the emmeans R package (Lenth, 2021)

to calculate the estimated target detection probabilities and obtain odds ratio comparisons

between the log and linear scale.

3 Results

We recruited participants and conducted the study via Prolific, a crowd-sourcing website,

in March 2022. The study included a diverse group of participants, with an inner-quartile
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age range between 23 and 31 and a median age of 26 years old. Among the participants,

59% self-identified as male, 40% as female, and 1% as variant/nonconforming. Additionally,

individuals from more than 21 countries participated in the study and 97% of the partic-

ipants indicated fluency in English. Moreover, 81% of the participants reported having

completed some undergraduate courses or higher. During data collection, 325 individuals

completed 4,492 individual test lineup evaluations. We included only participants in the

final analysis who completed the entire study, which included 311 participants and 3,958

lineup evaluations. Due to server capacity, some participants were required to restart the

study, thus resulting in the possibility of more than twelve lineup evaluations per partici-

pant. As a whole, participants evaluated each uniquely generated lineup plot between 141

and 203 times (Mean: 164.92, SD: 14.9). Participants correctly identified the target panel

in 47% of the 1,981 lineup evaluations made on the linear scale and 65.3% of the 1,977

lineup evaluations made on the log scale.

Fig. 8 shows the observed participant accuracy for each scale and curvature combination

scenario. We can see from the observed results that participant accuracy for the linear

scale ranged from 3.3% to 91.6% while participant accuracy when identified on the log

scale ranges from 46.6% to 89%. On both the log and linear scales, the highest accuracy

occurred in lineup plots where the target model and null model had a considerable difference

in curvature, and the target plot had more curvature than the null plots (high curvature

target plot embedded in low curvature null plots). There was a decrease in accuracy

on the linear scale when comparing a target plot with less curvature to null plots with

more curvature (medium curvature target plot embedded in high curvature null plots;

low curvature target plot embedded in medium curvature null plots; low curvature target

plot embedded in high curvature null plots). Best et al. (2007) found that the accuracy
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of identifying the correct curve type was higher when presented with nonlinear trends,

indicating that it is hard to say something is linear (i.e., something has less curvature),

but easy to say that it is not linear; our results concur with this observation. Additionally,

accuracy increased when data was displayed on the log scale compared to the linear scale

in all curvature scenarios with an exception of a medium target curve embedded in low

null curves. The thumbnail images below this particular scenario provides support for

the results found in Best et al. (2007) and visually demonstrate the opposing perceptual

behaviors of the curves for this scenario when displayed on the two different scales. In

addition to participant accuracy, we observed that, in general, participants who correctly

identified the target plot were more confident across all conditions. We discuss further

details regarding selection reasoning and confidence level in the appendix.

The results from the GLMM indicated a strong interaction between the curvature combi-

nation and scale (χ2
5 = 294.443; p < 0.0001), and the estimated variance due to participant

and data set were σ̂2
participant = 1.19 (s.e. = 1.09) and σ̂2

data = 0.433 (s.e. = 0.66), respec-

tively. Therefore, we concluded that there was low variability in the accuracy of target

panel detection between participants and across replications of uniquely simulated data

sets. To determine the effect of scale, we compared the estimated accuracy between the log

and linear scale within each curvature combination due to the interaction as determined

by the GLMM.

Fig. 9 displays the estimated (log) odds ratio of successfully identifying the target panel

on the log scale compared to the linear scale. The thumbnail figures to the right of the

plot illustrate the curvature combination on the linear (left thumbnail) and log base ten

(right thumbnail) scales associated with the y-axis label. The choice of scale had no impact

if the curvature differences were substantial and the target plot had more curvature than
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Figure 8: The observed accuracy for identifying the target panel for each curvature combi-

nation scenario with the accuracy for the linear scale shown on the top and the accuracy

for the log scale shown on the bottom. The thumbnail figures below each plot display the

curvature combination as shown in Fig. 4 on both scales.
20



the null plots (high curvature target plot embedded in low curvature null plots). However,

presenting data on the log scale makes us more sensitive to slight changes in curvature (low

or high curvature target plot embedded in medium curvature null plots; medium curvature

target plot embedded in high curvature null plots) and apparent differences in curvature

when the target plot had less curvature than the null plots (low curvature target plot

embedded in high curvature null plots). An exception occurred when identifying a plot

with curvature embedded in null plots close to a linear trend (medium curvature target

panel embedded in low curvature null panels). The results indicate that participants were

more accurate at detecting the target panel on the linear scale than on the log scale.

When examining this curvature combination, the same perceptual effect occurred as we

previously saw, but in a different context of scales. On the linear scale, participants were

perceptually identifying a convexly curved trend from close to a linear trend, whereas after

the logarithmic transformation, participants were perceptually identifying a trend close to

linear from a concavely curved trend (Fig. 4). This result again supports the claim that

it is easy to identify a curve in a group of lines but harder to identify a line in a group of

curves (Best et al., 2007).

4 Discussion and Conclusion

This work aims to provide foundational research to support the principles that guide design

decisions in scientific visualizations of exponential data. In this study, we explored the

use of linear and log scales to determine whether the choice of scale impacts our ability

to notice differences in exponentially increasing trends. The results indicated that when

there was a considerable difference in curvature between the target plot and null plots

and the target plot had more curvature than the null plots, the choice of scale had no
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Figure 9: Estimated (log) odds ratio of successfully identifying the target panel on the

log scale compared to the linear scale. The y-axis indicates the model parameters used to

simulate the null plots with the target plot model parameter selection designated by shape

and shade. The thumbnail figures on the right display the curvature combination as shown

in Fig. 4 on both scales (linear - left, log - right).
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impact, and participants accurately differentiated between the two curves on both the

linear and log scale. However, displaying exponentially increasing data on a log scale

improved the accuracy of differentiating between models with slight curvature differences

or apparent curvature differences when the target plot had less curvature than the null plots.

An exception occurred when identifying a plot with curvature embedded in surrounding

plots perceived close to a linear trend, indicating that it is easy to identify a curve in

a group of lines but much harder to identify a line in a group of curves. Using visual

inference to identify these guidelines suggests that there are perceptual advantages to log

scales when differences are subtle. It is worth noting that our study focused specifically

on data simulated with a three-parameter exponential model and such conclusions may

not be broadly applicable to functions resulting in curvature. This scenario, while fairly

specific, lays the perceptual groundwork for more investigation into the use of log scales

with exponential data. Now that we know how curvature can be distinguished, it’s easier

to conduct follow up studies that cover more scenarios and use different graphical testing

methods.

We conducted this study as the first in a series of three graphical tests to understand the

perceptual and cognitive implications of using log scales to display exponentially increasing

data. In our next two papers in this series, we will investigate whether using log scales

presents cognitive disadvantages, such as making it harder to utilize graphical information.

These studies serve as an example of multi-modal graphical testing, examining different

levels of engagement and interaction with graphics in order to produce nuanced, specific

guidelines for graphical design. By testing graphics in situations similar to how they are

used in practice, we can gain additional insight into graphical perception and improve visual

communication of scientific results.
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Supplementary Material

� Participant Data: De-identified participant data collected in the study and used

for analyses (lineup-model-data.csv).

� Data Analysis Code: The code used to replicate the analysis in this paper (lineups-

analysis.qmd).

� Study Applet Code: The code used to create the study applet via RShiny can be

found on GitHub at https://github.com/earobinson95/perception-of-statistical-

graphics-log

� README: File containing detailed descriptions of the supplementary material.

(README.html).
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A Exponential growth rates and curvature

Let us consider a simple equation which we could use to simulate data which grows expo-

nentially in x, with optional error term ϵ:

y = exp{β1x+ ϵ} where ϵ ∼ N(0, σ). (A1)

2.
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Figure A1: Linear and log scale simple exponential equations as specified in Eq. (A1), with

error term excluded. The y-axis endpoints are a primary visual signal when differentiating

between the lines in both plots.

It is important in lineup studies to control for extraneous visual signals, and when other

visual signals creep in, results of the study can be difficult to interpret (VanderPlas and

Hofmann, 2017).

In this particular case, the extraneous visual signals are the endpoints of the lines (the

endpoint at x = 10 on a linear scale, and both endpoints on the log scale), as shown in

Fig. A1. Preattentive features guide attention (Wolfe and Utochkin, 2019); one of the first

things we do when scanning a graph is to notice the extent of the data within the axes. We

must control the endpoints to ensure that participants are using active attention to assess

the lineup and draw conclusions, so that the whole visual signal is processed as part of the
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Figure A2: When axis limits are fixed to the most expansive extent in the generated data,

the primary signal becomes the extent of the domain which has data, rather than the

growth rate itself.

lineup evaluation; if participants are making decisions off of the endpoints, then we cannot

interpret the results to say that they are assessing the rate of exponential growth rather

than the end result.

There are several different options for controlling the visual signal in a lineup:

0. Do nothing and set each subplot’s limits to the overall maximum limits.

1. allow each subplot to have different axis limits

2. truncate the displayed range of each subplot to the minimum range generated in the

lineup

3. add extra parameters to the exponential equation to adjust the range of the data so

that it fits within a pre-specified domain, as in Algorithm 2.

Typically, lineups do not show axis labels or scaling, because the goal is to assess the

signal from the data without additional context. In addition, the traditional 20-panel lineup
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Figure A3: When y-axis limits vary by panel, the y-axis labels are the primary visual

signal; the secondary signal (when the panels are overlaid) is the curvature of the line.

would be quite visually confusing in this circumstance:

Fig. A3 demonstrates that when we ignore the y-axis labels and overlay the signal panel

with one of the null panels, the remaining difference is the curvature of the line. If we want

to keep the standard convention of not including y-axis labels in lineups for simplicity and

to reduce plot clutter, this alternative signal seems promising (and as we will show, is

approximately equivalent to option 3).

Let us next consider option 2: Crop each panel to the minimum limits of all generated

data. The result is shown in Fig. A4. This operation shifts which axis becomes the visually

important factor, but doesn’t change the problem: previously the issue was the y-axis

extent, now it is the x-axis extent. Both of these parameters are implicitly affected by how

we generate exponential data. In order to truly assess whether people can discriminate
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Figure A4: When axis limits are fixed to the most restrictive in all generated data, the

primary signal becomes the extent of the x axis which is covered with data, rather than

the growth rate itself.

between comparable exponential growth rates graphically, it is more useful to approach the

problem from a curvature perspective rather than to artificially limit the data shown.

This issue is a fundamental problem when testing graphics: the test must meet the

“goldilocks” standard - not too hard, not too easy, but just right. Both option 0 and

option 2 fail this standard.

Visually, both the x and y axes matter equally, even if it might on paper make sense to

truncate x in order to control the y axis range.

An additional benefit of controlling endpoints is that it also provides some realism:

our goal was to assess the ability to examine exponential growth rates, motivated by the

COVID-19 pandemic. As each geographic reporting region started with different numbers of

cases and had different control policies, the α and θ parameters are reasonable to represent

some of these differences while still examining the underlying exponential behavior.
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To control these endpoints on both scales then we have to move to an exponential model

that is a bit more complicated:

y = α · exp {β1x+ ϵ}+ θ where ϵ ∼ N(0, σ). (A2)

α and θ were used to make endpoints consistent among the growth rates. As a result,

the lineups examine the degree of inflection of the trend rather than the explicit exponential

growth rate. An explanation for how the ultimate values for α and θ were determined is

provided in Algorithm 2. Fig. A5 uses the parameters in Table 1 and the data generating

method described in Algorithm 2. The result is a series of panels which have obvious

variation due to the points (a desirable feature) but where the underlying relationship shown

in blue has consistent endpoints. As a result, the question becomes whether participants

can identify that plot 3 has a different growth rate (as measured by the curvature of the

line).

B Rorschach Lineup Evaluation

In addition to the experimental lineups, we generated three sets of homogeneous “Rorschach”

lineups, each featuring panels simulated from the same distribution. Importantly, partici-

pants were unaware that there was no designated target panel for identification. Fig. B6

illustrates the selection proportions for each panel on the “Rorschach” lineups correspond-

ing to different curvature combinations and replicated data sets, when presented on both log

and linear scales. Notably, the panel number is irrelevant, and the darker shade (bottom)

denotes panels chosen more frequently than others.

This approach allows us to explore whether any null panels were significantly more

unique, providing insights into the null plot sampling method. The plots exhibit a relatively
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Figure A5: When the data are scaled such that endpoints are similar across all conditions,

the primary feature becomes the curvature of the line, while individual plots show random

variation due to the scatter around the line.

even distribution, offering multiple candidates for the most interesting panel. It is worth

noting that in the low curvature “Rorschach” lineups simulated in data set replication one,

a single panel stands out, with over 50% of participants selecting the same null panel on

the linear scale and just under 50% on the log scale. Through a visual examination of

“Rorschach” evaluations, we determined that our null sampling method is appropriate.

C Participant confidence and accuracy

In addition to investigating how scale and curvature rate influence participant accuracy, we

asked participants to indicate their level of confidence on a five-point Likert scale by an-

swering, “How certain are you?” Fig. C7 shows the observed confidence rating proportions

for correct and incorrect identifications across the different scale and curvature combination

scenarios. Overall, participants who correctly identified the target plot were more confident
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Figure B6: Observed proportions of panel selections for the ’Rorschach’ lineups. The darker

shade (bottom) denotes panels chosen more frequently than others.
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Figure C7: Observed proportion of evaluations for each confidence rating (five-point Likert

scale) by accuracy. The width of the bars indicates the number of evaluations for correct

and incorrect identifications within each curvature combination.

in their plot choice across all conditions with the highest confidence levels and accuracy in

scenarios with large differences in curvature between the target and null panels.
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