Their description refers to the triplet (*teacher id = j, course id = k, question number = n*). When the last value of the triplet (n) is dropped, it means that the variable takes the same values for all $n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

Name	Description	Method of calculation
SET_score_avg,(j,k,n)	The average Likert-scale score from answers to question n of course j taught	The arithmetic average of all partial Likert-style scores in answers to
	by teacher <i>k</i> ,	question n
maximum_score _(j,k,n)	A dummy variable equal to 1 when the average Likert-scale score from answers to a question n of a course j taught by teacher k is the maximum value of 5.0 and equal to 0 otherwise	A dummy variable equal to 1 when the teacher's average score for answers to question n is the maximum value of 5.0 and equal to 0 otherwise
log_no_participants _(j,k)	The logarithm ¹ of the number of participants in course <i>j</i> taught by teacher k	$1 + \log(no_participants_{(j,k)}).$
$resp_share_{(j,k)}$	The share of participants that responded to the SET survey for course j taught by the teacher k	The ratio of survey respondents among all course participants to all course participants
stud_grade_avg_cur _(j.k)	The average grade of all the students that participated in the current semester in course j taught by teacher k	The arithmetic average of all grades in the current semester
stud_grade_avg _(j.k)	The average grade of all the students that participated in the last six semesters in course j taught by teacher k	The arithmetic average of all grades in the past six semesters
stud_grade_std_cur _(j.k)	The standard deviation of the grades of all the students that participated in the current semester in course j taught by teacher k	The standard deviation of all grades in the current semester
stud_grade_std _(j.k)	The standard deviation of the grades of all the students that participated in the last six semesters in course j taught by teacher k	The standard deviation of all grades in the past six semesters
percent_failed_cur _(j.k)	The percentage of students in the current semester that failed course j taught by teacher k	The number of failed students divided by the number of all participants in course j taught by teacher k
percent_failed _(j.k)	The percentage of students in the last six semesters that failed course j taught by teacher k	The ratio of the number of failed students divided by the number of all the participants in course j taught by teacher k
class_duration _(j.k)	The duration of a single class of course j taught by teacher k	The number of hours that a single class takes
weekday _{(j.k),w}	The day of the week of the course <i>j</i> taught by teacher <i>k</i> , $w \in \{Mon, Tue, Wed, Thu, Fri, Sat, Sun\}$. Seven dummy variables, six used in regression models.	A dummy variable equal to 1 if a course was held on day w, 0 otherwise

Table 1. Description of variables in the University SET dataset.

¹ The logarithm transformation reflects the diminishing effect of an additional student with the growing group size. For example, small groups of three and four students may make a difference for SET evaluation, but the difference between 80 and 81 students should not. $1+\log()$ ensures that the transformation result for the group consisting of one student is equal to 1.

$time_of_day_{(j,k),t}$	The time of day of the course <i>j</i> taught by teacher <i>k</i> , $t \in \{<10, 10\text{-}14, 14\text{-}18, >18\}$. Four dummy variables, three used in	A dummy variable equal to 1 if the course was held within the period t , 0 otherwise
	regression models.	
SET_score_lsem _k	The SET score of teacher <i>k</i> in the previous semester	The average SET score for a teacher from all questionnaires
academic_degree _{k,d}	The academic degree or position of teacher ² k , $d \in \{\text{master's, doctorate, professor, NA}\}$. Four dummy variables, three used in regression models.	A dummy variable equal to 1 if the teacher holds the given academic degree/position d . A maximum rule applies so that teacher k , who holds professorship title, will have the dummy variables for doctor and master's degree set to 0
<i>seniority</i> _k	The seniority of teacher <i>k</i>	The number of calendar years that have passed since the teacher was first employed at the university
gender _k	The gender of teacher <i>k</i> . Two dummy variables, one used in regression models.	Binary variable for the gender of the teacher, 1 for female and 0 for male

² In Poland professor is both the university position and the highest academic title, awarded by the president of Poland after a very long and detailed review conducted by the National Board of Scientific Excellence.